&          3-2-1 ªÅ¶¡·§©À

&          3-2-2 ªÅ¶¡§¤¼Ð¨t

&          3-2-3 ªÅ¶¡¦V¶qªº§¤¼Ðªí¥Üªk

&          3-2-4 ¥­­±¤èµ{¦¡

&          3-2-5 ªÅ¶¡ª½½u¤èµ{¦¡

 

3-2-1ªÅ¶¡·§©À

1.   /

¦p¥k¹Ïªº¥|¨¤À@®i¶}¹Ï¡A¥|¨¤À@©³­±¬°Ãäªø2ªº¥¿¤è§Î¡A¥|­Ó°¼­±³£¬O¸yªø¬°4ªºµ¥¸y¤T¨¤§Î¡A«h¦¹¥|¨¤À@ªº°ª«×¬°______

                                                                              (90¾Ç´ú)

 


 

2.    

±N¤@­Ó¥¿¥|­±Å骺¥|­Ó­±¤Wªº¦UÃ䤤ÂI¥Î½u¬q³s±µ¡A¥i±o¥|­Ó¤p¥¿¥|­±Åé¤Î¤@­Ó¥¿¤K­±Åé¡A¦p¤U¹Ï©Ò¥Ü¡C¦pªG­ì¥|­±ÅéABCDªºÅé¿n¬°12¡A¨º»ò¦¹¥¿¤K­±Å骺Åé¿n¬°______

                                                  (90¾Ç´ú)

 

6

 

3.    

¹Ï¤@¬°¤@¥¿¥ß¤èÅé, A, B, C¤À§O¬°©Ò¦bªºÃ䤧¤¤ÂI, ³q¹LA, B, C¤TÂIªº¥­­±»P¦¹¥ß¤èÅéªí­±¬ÛºI, °Ý¤U¦C¦óªÌ¬°¨äºI²ªªº§Îª¬?

(A)
ª½¨¤¤T¨¤§Î
(B)
«Dª½¨¤ªº¤T¨¤§Î
(C)
¥¿¤è§Î
(D)
«D¥¿¤è§Îªºªø¤è§Î
(E)
¤»Ãä§Î                                                                                                    (88¾Ç´ú)

 

(D)

 

4.    

ªø¤èÅ餤, ¤¬¬°¬n±×½uªº¸W½u¦@¦³______¹ï.                                   (87¾Ç´ú)

 

24

 

5.    

¦Ò¼{¤@¥¿¥ß¤èÅ餻­Ó­±ªº¦U¤¤¤ßÂI, «h¥H¨ä¤¤¥|­Ó¤¤¤ßÂI¬°³»ÂIªº¥¿¤è§Î¤@¦@¦³´X­Ó? (1)3   (2)4   (3)6   (4)8   (5)12                             (86¾Ç´ú)

 

(1)

 

6.    

¾Ç®Õ»\¤F¤@´É¥¿¥|­±Å骺¬Á¼þ·Å«Ç(¦p¤U¹Ï). ¤µ±ý±N¤@¿û¬W¾î¬[¦b«Ç¤¤, §@¬°¦Qªáªº¾î¼Ù. ¨ä¨âºÝ¤À§O©T©w¦b¨â­±ÀðABC©MACDªº­«¤ßE, F³B. ¥Íª«¦Ñ®v­n¥ýª¾¹D³o­Ó¿û¬W¦hªø, ¤~¯à½Ð¤u¤H»s§@. ÁöµMªºªø«×«Ü®e©ö¶q¥X, «o«ÜÃøª¦¨ìE, FÂI´ú¶qªø. ¥Íª«¦Ñ®v¦b¤W½Ò®É»¡¥X¥Lªº°ÝÃD, ¥ß¨è¦³¤@¦ì¦P¾ÇÁ|¤â»¡¥L¦³¿ìªk. ³o¦ì¦P¾Ç¦b¯È¤W¹º¥X¤U¹Ï, ºâ¥X:´N¸Ñ¨M¤F°ÝÃD. °Ý:=_______                                (85¾Ç´ú)

 

1:3

 

7.    

¤U¹Ï¤¤ABCD¬°¥¿¥|­±Åé, M¬°ªº¤¤ÂI, ¸Õ°Ý¤U¦C¨º¨Ç±Ô­z¬O¥¿½Tªº?

(A)
ª½½u»P¥­­±ABM««ª½
(B)
¦V¶q»P¦V¶q««ª½
(C)
ÐAMB>ÐADB
(D)
¥­­±ACD»P¥­­±BCDªº¤G­±¨¤(¾U¨¤)¤j©ó60¢X
(E)                                                                                              (84
¾Ç´ú)

 

(A)(B)(C)(D)

 

8.    

¤U¦C¦³ÃöªÅ¶¡ªº±Ô­z, ¨º¨Ç¬O¥¿½Tªº?
(A)
¹L¤wª¾ª½½u¥~¤@ÂI, ¡u«ê¦³¡v¤@¥­­±»P¦¹ª½½u««ª½
(B)
¹L¤wª¾ª½½u¥~¤@ÂI, ¡u«ê¦³¡v¤@¥­­±»P¦¹ª½½u¥­¦æ
(C)
¹L¤wª¾¥­­±¥~¤@ÂI, ¡u«ê¦³¡v¤@ª½½u»P¦¹¥­­±¥­¦æ
(D)
¹L¤wª¾¥­­±¥~¤@ÂI, ¡u«ê¦³¡v¤@¥­­±»P¦¹¥­­±««ª½
(E)
¹L¤wª¾¥­­±¥~¤@ÂI, ¡u«ê¦³¡v¤@¥­­±»P¦¹¥­­±¥­¦æ                   (83¾Ç´ú)

 

(A)(E)

 

 

3-2-2ªÅ¶¡§¤¼Ð

1.    

¦bªÅ¶¡¤¤, ³s±µÂIP(2, 1, 3)»PÂIQ(4, 5, 5)ªº½u¬q¤§««ª½¥­¤À­±¬°______                                                                                                        (88¾Ç´ú)

 

x+2y+z=13

 

2.    

¦bªÅ¶¡§¤¼Ð¤¤, ³]xy¥­­±¬°¤@Ãè­±, ¦³¤@¥ú½u³q¹LÂIP(1, 2, 1), ®g¦VÃè­±¤WªºÂIO(0, 0, 0), ¸gÃè­±¤Ï®g«á³q¹LÂIR. ­Y=2, «hRÂIªº§¤¼Ð¬°______                                                                                                        (84¾Ç´ú)

 

(-2, -4, 2)

 

3-2-3ªÅ¶¡¦V¶qªº§¤¼Ðªí¥Üªk

1.    

¤U¹Ï¬°¤@¥¿¥ß¤èÅé¡A ³Q¤@¥­­±ºI¥X¤@­Ó¥|Ãä§ÎABCD¡A¨ä¤¤B, D¤À§O¬°¸Wªº¤¤ÂI¡A¥B=1:2 ¡C«hcosÐDAB=______¡C(¤Æ¦¨³Ì²¤À¼Æ)
                                                                  (91¾Ç´ú)

 


 

2.    

¹Ï¤G¬°¤@¥¿¥ß¤èÅé, ¸Õ°Ý¤U¦CªÌ¬°¯u?

(A)=0
(B)=0
(C)
(D)=0
(E)                                                                          (88
¾Ç´ú)

 

(A)(B)(C)(E)

 

3.    

¦bªÅ¶¡¤¤, ¤U¦C¨º¨ÇÂI¥i»PA(1, 2, 3), B(2, 5, 3), C(2, 6, 4)¤TÂIºc¦¨¤@¥­¦æ¥|Ãä§Î                                                                                                             (87¾Ç´ú)
(A)(
-1, -5, -2)  (B)(1, 1, 2)   (C)(1, 3, 4)  (D)(3, 7, 6)  (E)(3, 9, 4)

 

(B)(C)(E)

 

4.    

¦³¤@¥¿¥ß¤èÅé, ¨äÃäªø³£¬O1, ¦pªG¦V¶qªº°_ÂI»P²×ÂI³£¬O¦¹¥¿¥ß¤èÅ骺³»ÂI, ¥B||=1, «h¦@¦³¦h¤Ö­Ó¤£¬Ûµ¥ªº¦V¶q
(A)3   (B)6   (C)12   (D)24   (E)28                                                  (86
¾Ç´ú)

 

(B)

 

3-2-4¥­­±¤èµ{¦¡

1.    

ªÅ¶¡¤¤¦³¤@ª½½uL»P¥­­±E:x+2y+3z=9««ª½¡C¸Õ¨D³q¹LÂI(2,-3,4)¥B»Pª½½uL««ª½ªº¥­­±¤èµ{¦¡¡C                                                                           (89¾Ç´ú)

 

x+2y+3z-8=0

 

2.    

¦bªÅ¶¡¤¤, ³s±µÂIP(2, 1, 3)»PÂIQ(4, 5, 5)ªº½u¬q¤§««ª½¥­¤À­±¬°______                                                                                                        (88¾Ç´ú)

 

x+2y+z=13

 

3.    

³]P¡BQ¬°¥­­±ax+by+cz=5¤W¨â¬Û²§ÂI,¥B=(x0, y0, z0),«h(a, b, c)¬°
(1)
¤£©w­È, ÀH(x0, y0, z0)¦Ó§ïÅÜ  (2)25  (3)5  (4)0  (5)-1                (86¾Ç´ú)

 

(4)

 

4.    

³]q¬°¨â¥­­±2x-y+2z=6»P3x-4z=2ªº§¨¨¤(¨ú¾U¨¤), «hq³Ìªñªº¾ã¼Æ«×¼Æ¬°_______«×                                                                                                 (86¾Ç´ú)

 

82

 

5.    

¤wª¾ª½½uL1¡BL2¥æ©ó(1, 0, -1), ¥B¬Û¤¬««ª½, ¨ä¤¤L1: tÎR,
L2:
tÎR. ­Y¥HL1¬°¶b±NL2±ÛÂà¤@°é±o¤@¥­­±, «h¦¹¥­­±¤èµ{¦¡¬°¦ó?
(A)x=1  (B)y=0  (C)x+y
-1=0  (D)x-y-z=2  (E)x+y-3=0                 (85¾Ç´ú)

 

(C)

 

3-2-5ªÅ¶¡ª½½u¤èµ{¦¡

1.    

³]ª½½uLªº¤èµ{¦¡¬°, «h¤U¦C¨º¤@­Ó¥­­±»PL¥­¦æ
(A)2x
-y+z=1   (B)x+y-z=2   (C)3x-y+2z=1   (D)3x+2y+z=2
(E)x
-3y+z=1                                                                                                (83¾Ç´ú)

 

(B)

 

2.    

³]L¬°x-y+z=1»Px+y-z=1¨â¥­­±ªº¥æ½u, «hª½½uL¤W»PÂI(1, 2, 3)¶ZÂ÷³Ìªñ¤§ÂIªº§¤¼Ð¬°______                                                                         (83¾Ç´ú)