正弦函數學習單

一、基本圖形

- 1. 令x之角度為 -90° , -80° , -70° , -60° , -50° , -40° , -30° , -20° , -10° ,0, 10° , 20° , 30° , 40° , 50° , 60° , 70° , 80° , 90° 代入,轉換成弧度後,標出點作標。
- 2. 直接畫出正弦函數之圖形。
- 3. 觀察描出之點的位置,與全圖的關係。

操作步驟

- (1).在『請輸入角度 x』輸入上述角度,然後按 ENTER
- (2).程式自行換算成弧度,並計算出函數值,按 POINT 將座標點標示在座標平面上。
- (3).繼續輸入角度請按 YES ,結束輸入離開請按 NO。
- (4).將圖形整個描繪出來請按下方 sinx 圖形,將圖形擦拭掉請按 CLEAR,過程中離開請按右下方 EXIT。
- (5).若要運用『sinx 圖形』作其他變換,請按**應用**,並選擇應用類型,其餘步驟請參考二、圖形的應用之『操作步驟』。

二、圖形的應用

- 1. $y=\sin x + k$
 - (1) 令 k = 1 作出函數 $y = \sin x + 1$ 之圖形
 - (2) 令 k = 2 作出函數 $y = \sin x + 2$ 之圖形
 - (3) 令 k = -1 作出函數 $y = \sin x 1$ 之圖形
 - (4) 令 k = -2 作出函數 $y = \sin x 2$ 之圖形
 - (5) 比較圖形之間之變化,並比較 $y=\sin x+k$ 之圖形與 $y=\sin x$ 圖形的關係。

操作步驟

- (1).在『請輸入 k 之值』輸入上述之 k, 然後按 ENTER。
- (2). 若 k 之值輸入錯誤,可按**修正**回到步驟(1)進行 k 之值的修正,在『請輸入角度 x 』輸入任意角度,然後按 **ENTER**,或利用 ↑ ↓ 增減度數,從 0°或輸入最後一個角度開始,每次增減 10°
- (3).程式自行換算成弧度,計算出函數值『函數為 $y=\sin x$ 』請按 \overline{OK} ,按 \overline{POINT} 將座標點 $P_1(x, y=\sin x)$ 標示在座標平面上。
- (4).將上述函數值『函數為 $y=\sin x$ 』再代入計算『 $y=\sin x+k$ 』請按 **OK** ,將點座標 $P_2(x, y=\sin x+k)$)標示在座標平面上請按 **POINT** ,觀察兩點 P_1 與 P_2 之位置關係。
- (5). 繼續輸入角度請按 YES , 結束輸入離開請按 NO , 過程中離開請按右下方 EXIT , 或是按 sinx+k 直接將函數 『 y=sinx+k 』圖形畫出 , 觀察兩圖形 y=sinx+k 與 y=sinx之關係。
- (6). 將圖形擦拭掉請按 CLEAR ,做出正弦函數圖形請按 sinx **圖形** ;若要運用 y=sinx 圖 形作其他變換,請按**應用**。

2. $y=k \cdot \sin x$

- (1) 令 k = 1 作出函數 $y = 1 \cdot \sin x$ 之圖形
- (2) 令 k = -1 作出函數 $y = -1 \cdot \sin x$ 之圖形
- (3) 令 k = 2 作出函數 $y = 2 \cdot \sin x$ 之圖形
- (4) 令 k = -2 作出函數 $y = -2 \cdot \sin x$ 之圖形
- (5) 令 $k = \frac{1}{2}$ 作出函數 $y = \frac{1}{2} \cdot \sin x$ 之圖形

- (6) 令 $k = \frac{1}{3}$ 作出函數 $y = \frac{1}{3} \cdot \sin x$ 之圖形
- (7) 比較圖形之間之變化,並比較 $y=k \cdot \sin x$ 之圖形與 $y=\sin x$ 圖形的關係。

操作步驟

- (1).在『請輸入 k 之值』輸入上述之 k , 然後按 **ENTER**。
- (2). 若 k 之值輸入錯誤,可按**修正**回到步驟(1)進行 k 之值的修正,在『請輸入角度 x 』輸入任意角度,然後按 **ENTER**,或利用 ↑ 및 增減度數,從 0°或輸入最後一個角度開始,每次增減 10°
- (3).程式自行換算成弧度,計算出函數值『函數為 $y=\sin x$ 』請按 $\overline{\textbf{OK}}$,按 $\overline{\textbf{POINT}}$ 將座標點 P_1 (x, $y=\sin x$)標示在座標平面上。
- (4).將上述函數值『函數為 $y=\sin x$ 』再代入計算『 $y=|k|\sin x$ 』請按 **OK** ,將點座標 P₂ (x , $y=|k|\sin x$))標示在座標平面上請按 **POINT**。
- (5). 若k > 0,直接跳到步驟(6);若k < 0,將上述函數值『函數為 $y = |k|\sin x$ 』變號後得『 $y = k \cdot \sin x$ 』請按 **OK**,將點座標 P₃(x, $y = k \cdot \sin x$))標示在座標平面上請按 **POINT**,觀察三點 P₁與 P₂與 P₃位置關係。
- (6). 繼續輸入角度請按 YES , 結束輸入離開請按 NO , 過程中離開請按右下方 EXIT , 或是按 \mathbf{k} 's \mathbf{inx} 直接將函數 \mathbf{g} $\mathbf{y} = k \cdot \sin x$ 。圖形畫出,觀察兩圖形 $\mathbf{y} = k \cdot \sin x$ 與 $\mathbf{y} = \sin x$ 之關係。
- (7). 將圖形擦拭掉請按 CLEAR , 做出正弦函數圖形請按 sinx **圖形** ; 若要運用 y=sinx 圖 形作其他變換,請按**應用**。

3. $y=\sin(x+k\pi)$

- (1) 令 $k = \frac{1}{3}$ 作出函數 $y = \sin(x + \frac{1}{3}\pi)$ 之圖形
- (2) 令 $k = \frac{2}{3}$ 作出函數 $y = \sin(x + \frac{2}{3}\pi)$ 之圖形
- (3) 令k = 1作出函數 $y = \sin(x + \pi)$ 之圖形
- (4) 令 $k = -\frac{1}{3}$ 作出函數 $y = \sin(x \frac{1}{3}\pi)$ 之圖形
- (5) 令 $k = -\frac{2}{3}$ 作出函數 $y = \sin(x \frac{2}{3}\pi)$ 之圖形
- (6) 令 k = -1 作出函數 $y = \sin(x \pi)$ 之圖形
- (7) 比較圖形之間之變化

操作步驟

- (1).在『請輸入 k 之值』輸入上述之 k(分別輸入分子與分母),其中 $\underline{\it PAI}=\pi$,然後按 $\overline{\it ENTER}$ 。
- (3).程式自行換算成弧度,計算出函數值『函數為 $y=\sin x$ 』請按 \overline{OK} ,按 \overline{POINT} 將座標點 $P_1(x, y=\sin x)$ 標示在座標平面上。
- (4).計算『 $y=\sin(x+k\pi)$ 』請按 **OK**,將點座標 $P_2(x,y=\sin(x+k\pi))$)標示在座標平面上請按 **POINT**。

- (5). 繼續輸入角度請按 YES, 結束輸入離開請按 NO, 過程中離開請按右下方 EXIT, 或是按 $sin(x+k\pi)$ 直接將函數 『 $y=sin(x+k\pi)$ 』 圖形畫出,觀察兩圖形 $y=sin(x+k\pi)$ 與 y=sinx 之關係。
- (6). 將圖形擦拭掉請按 CLEAR ,做出正弦函數圖形請按 sinx 圖形 ;若要運用 y=sinx 圖 形作其他變換,請按應用。

4. $y=\sin(kx)$

- (1) 令 k = 2 作出函數之 $y = \sin(2x)$ 圖形
- (2) 令 $k = \frac{1}{2}$ 作出函數 $y = \sin(\frac{1}{2}x)$ 之圖形
- (3) 令k = -2作出函數 $y = \sin(-2x)$ 之圖形
- (4) 令 $k = -\frac{1}{2}$ 作出函數 $y = \sin(-\frac{1}{2}x)$ 之圖形
- (5) 令 k = -1 作出函數 $y = \sin(-x)$ 之圖形
- (6) 令k = 3作出函數 $y = \sin(3x)$ 之圖形
- (7) 令 $k = \frac{1}{3}$ 作出函數 $y = \sin(\frac{1}{3}x)$ 之圖形
- (8) 比較圖形之間之變化

操作步驟

- (1).在『請輸入 k 之值』輸入上述之 k , 然後按 **ENTER**。
- (2). 若 k 之值輸入錯誤,可按**修正**回到步驟(1)進行 k 之值的修正,在『請輸入角度 x』輸入任意角度,然後按**ENTER**,或利用 ① □ 増減度數,從 0°或輸入最後一個角度開始,每次增減 10°
- (3).程式自行換算成弧度,計算出函數值『函數為 $y=\sin x$ 』請按 OK,按 POINT 將座標點 $P_1(x, y=\sin x)$ 標示在座標平面上。
- (4).計算『 $y=\sin(|k|x)$ 』請按 OK, 將點座標 $P_2(x, y=\sin(|k|x))$)標示在座標平面上請按 POINT。
- (5) $\overline{A} = \overline{A} > 0$,直接跳到步驟(6);若 $\overline{A} < 0$,代入計算『 $y = \sin(kx)$ 』請按 **OK** ,將點座標 P_3 (x , $y = \sin(kx)$))標示在座標平面上請按 **POINT**,觀察三點 P_1 與 P_2 與 P_3 位置關係。
- (6). 繼續輸入角度請按 YES , 結束輸入離開請按 NO , 過程中離開請按右下方 EXIT , 或是按 sin(kx) 直接將函數 『 y=sin(kx) 』圖形畫出 , 觀察兩圖形 $y=k\cdot sinx$ 與 y=sinx 之關係。
- (7). 將圖形擦拭掉請按 CLEAR , 做出正弦函數圖形請按 sinx **圖形** ; 若要運用 y=sinx 圖 形作其他變換,請按**應用**。